FH-Prof. DI Dr. Carina Huber-Gries
Fakultätsleiterin und Departmentleiterin Life Science Engineering
Persönliche Daten und Ausbildung
- Dissertation am Zentrum für NanoBiotechnologie der Universität für Bodenkultur (BOKU) Wien
- Diplomarbeit in der Arbeitsgruppe „Molekulare Biotechnologie“ am Zentrum für NanoBiotechnologie der BOKU Wien
- Diplomstudium “Lebensmittel- und Biotechnologie“ an der BOKU Wien
Beruflicher Werdegang
- Seit 2009 hauptberuflich an der FH Technikum Wien
- 2008-2009 Karenz
- Seit 2007 nebenberuflichere Lektorin an der FH Technikum Wien
- 2006-2007 Karenz
- 2004-2006 wissenschaftliche Mitarbeiterin am Zentrum für NanoBiotechnologie der BOKU Wien mit mehrfachen Forschungsaufenthalten am Max Planck Institut für Polymerforschung in Mainz, Deutschland
Schwerpunkte der Lehre
- Molekularbiologie
- Nanobiotechnologie
- Elektronenmikroskopie
- Rasterkraftmikroskopie
Publikationen
Towards a platform for spatially defined cell characterization of a miniturized heart tissue model
A microfluidic-based easy-to-use cardiac tissue model for drug screening applications
Establishment of an in vitro heart tissue model for pre-clinical screening of therapeutic agents using microfluidic technology
Microfluidic based heart-tissue model for directed development of cardiac specific cell types
Einführung und Optimierung eines praxisorientierten PBL-Moduls im Life-Science-Bereich
Characterization of the Functional Domains of Bacterial Surface Layer Proteins
Fluorescence-based Equilibrium and Kinetic Studies on Carbohydrate-Protein Binding: Interaction of Bacterial Surface Layer Proteins with their Specific Secondary Cell Wall Polymers
The relevance of S-layer fusion proteins in nanotechnology
Hydrostatic pressure-generated reactive oxygen species induce osteoarthritic conditions in cartilage pellet cultures
Einführung und Optimierung eines praxisorientierten PBL-Moduls im Life-Science-Bereich
Silk fibroin based carrier system for delivery of fibrinogen and thrombin as coagulant supplements
The high-molecular-mass amylase (HMMA) of Geobacillus stearothermophilus ATCC 12980 interacts with the cell wall components by virtue of three specific binding regions
High-affinity tags fused to s-layer proteins probed by atomic force microscopy
S-layers as a tool kit for nanobiotechnological applications
Bacterial protein patterning by micro-contact printing of PLL-g-PEG
Atomic-force-microscopy imaging and molecular-recognition-force microscopy of recrystallized heterotetramers comprising an S-layer-streptavidin fusion protein
The three S-layer-like homology motifs of the S-layer protein SbpA of Bacillus sphaericus CCM 2177 are not sufficient for binding to the pyruvylated secondary cell wall polymer
Heterotetramers Formed by an S‐Layer–Streptavidin Fusion Protein and Core‐Streptavidin as a Nanoarrayed Template for Biochip Development
Biophysical characterization of the entire bacterial surface layer protein SbsB and its two distinct functional domains
Interaction of the crystalline bacterial cell surface layer protein SbsB and the secondary cell wall polymer of Geobacillus stearothermophilus PV72 assessed by real-time surface plasmon resonance biosensor technology
Einführung und Optimierung eines praxisorientierten PBL-Moduls im Life-Science-Bereich
S-layer-streptavidin fusion proteins and S-layer-specific heteropolysaccharides as part of a biomolecular construction kit for application in nanobiotechnology
Application Potential of Bacterial Self-Assembly Systems for Nanobiotechnology
S-layer-streptavidin fusion proteins: Novel Tools in Nanobiotechnology
Chimaeric S-Layers as Nanopatterned Biomaterials for Applications in Nanobiotechnology
Recombinant S-layer-streptavidin fursion proteins: Functional protein lattices as nanoarrays for biochip development
S-layer-streptavidin fursion protein as template for nanopatterned molecular arrays
Nanoscale patterning of S-layer proteins as a natural self-assembly system