Dorota Szwarc-Hofbauer, MSc
Lecturer/Researcher
Leiterin des Stadt Wien Kompetenzteams Lehre Wissens-KnockIn
Ausbildung
- Seit 2017 | Doktoratsstudium, Molecular Mechanisms of Cell Biology, Medical University of Vienna & UAS Technikum Vienna
- 2013 – 2015 | Master of Science in Engineering (MSc) in Tissue Engineering and Regenerative Medicine, UAS Technikum Vienna
- 2009-2015 | Bachelor of Science in Engineering (BSc) in Biotechnology, Warsaw University of Life Sciences, Warsaw (PL)
Beruflicher Werdegang
- Seit 2015 | Junior Researcher/Lecturer, Department Life Science Engineering, UAS Technikum Vienna
- 2014 – 2015 | Research Assistant, Department Life Science Engineering, UAS Technikum Vienna
- 2012 – 2013 | Laboratory Assistant, Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Warsaw (PL)
- 2012 | Intern, Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Warsaw (PL)
Kompetenzen
- Zellbiologie
- Molekularbiologie
- Signaltranduktion
- Stoßwellentherapie
- Regenerative Therapien von Herzerkrankungen
- Mechanotransduktion
Publikationen
Cyclic Tensile Stress Induces Skeletal Muscle Hypertrophy and Myonuclear Accretion in a 3D Model
Purinergic P2Y 2 receptors modulate endothelial sprouting
Shock wave treatment of muscle (stem) cells - a new implementation for regeneration
Shock wave treatment of 3D cardiac model systems activates ERK 1/2 signaling pathway and influences cardiomyogenesis
Shock wave treatment of 3D cardiac model systems activates ERK 1/2 signaling pathway and influences cardiomyogenesis
Shock wave treatment positively influences cardiomyogenesis in an energy-dependent manner
Shock wave treatment of muscle (stem) cells - a new implementation for regeneration
Molecular mechanisms underlying the potential of shock wave treatment for cardiac therapy
Elucidating the molecular mechanisms underlying cardiac shock wave therapy
The effect of shock waves on in vitro cartilage development in silk scaffolds
Shock wave treatment of 3D cardiac model systems activates ERK 1/2 signaling pathway and influences cardiomyogenesis
A microfluidic-based easy-to-use cardiac tissue model for drug screening applications
Microfluidic based heart-tissue model for directed development of cardiac specific cell types